Mapping the sky with Planck

Planck measures 4.2 metres high and has a primary mirror 1.5 metres in diameter. The satellite weighs 1900 kilograms. During the planned 15-month mission, the two instruments on Planck will receive and analyze the radiation captured by the mirror. The Low Frequency Instrument (LFI) and the High Frequency Instrument (HFI) will complement each other to analyze the light gathered during the two complete microwave surveys of the sky. These two cameras cover different areas of the light spectrum. The LFI will operate like a transistor radio and the HFI will convert the electromagnetic radiation into heat for subsequent analysis. The satellite is in orbit around the second Lagrange point (a stable point in space located 1.5 million kilometres from Earth) and is kept at a temperature approaching absolute zero.

Photo of Planck's mirror
Planck's 1.5-metre mirror during testing. (Credit: European Space Agency)
Illustration of Planck
Illustration of Planck (Credit: European Space Agency)

Canada participated in the development of the LFI and HFI, the two instruments on Planck, mainly through development of the rapid interpretation software and the real-time analysis software that will make it possible to verify the data in the preliminary stages of the mission. The data analysis software for the LFI and HFI were developed in parallel by two teams, one at the University of British Columbia and one at the University of Toronto, both funded by the Canadian Space Agency (CSA).

Professor Douglas Scott of the University of British Columbia is leading the Canadian LFI team. The HFI team is led by Professor J. Richard Bond of the University of Toronto. The Canadian teams have spent more than a decade working with their international colleagues to plan for the Planck mission, and will be directly involved in using the data to answer some of the biggest questions in the Universe.